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1. Introduction

This paper concerns a constructive adaptation of the Borel—Cantelli lemma and

• the variants of it known as 0,1 laws (1). In general we restrict our

attention to techniques that allow us to solve problems of the following

variety: Given effective rules for constructing finite objects and measuring

their complexity, when does there exist an infinite object that is

decomposable into infinitely many finite parts that are maximally complex?

We choose to set such problems in the context of the complexity theory for

infinite strings , since results phrased in this way have implications for

other aspects of complexity theory (e.g. the complexity of polynomial

evaluation ‘2 ,3)).

Let {0,l}* denote the set of all finite strings over the alphabet {0 ,l},

let (O,1}~
” denote the set of all infinite 0,1 strings, and let N denote the

set of non—negative integers.

By a complexity measure on strings we mean a function

c: {0 ,l}* -* N.

There are several natural examples of such measures: Let a c {0,l)*; then,

for instance , we can take c(aO,...,c*k) to be either

(1) the complexity in the sense of [6] of the string

or (ii) the length of the shortest straightline program that

evaluates the polynomial

~~~~L 
4’- • ._b—-~~~~~~ .~~~~~~~~*, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~‘ - • ‘ -  ‘ ...
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k
E a, x

with coefficients aQ,...,ak.

From all strings of length k, we can choose those with maximal

complexity ck:

C
k 

= max {c~~ l a l  — k}t

With this notation , wa can phrase our problem more precisely :

(I)
When does there exist a E {0,lJ such that (*)

c(aO,...,ak_l) = Ck for infinitely many k c N?

Problems such as (*) have comcrete motivation. Consider polynomials

with 0,1 coefficients that are hard to evaluate in the sense of [3], that is,

polynomials with the property that the 0,1 string obtained by concatenation of

coefficients is of maximal complexity. Conversely , if a is a finite or

infinite string over {0,i}, then a corresponds in a natural way to a power

series

IaIa I
q (x)~~ E a1 x .

1—0

For la l < =, we can take c(a0,...,a,a,_i) to be the number of non—scalar

multiplications required to evaluate the polynomial q
U(x) by a straightline

- 1 .

f We use la l to denote the length of a. If a E {O ,l)~’, then by convention

IaI — .

E~. —
~

- -——-
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program. Suppose that c(a
0
... ,ak_i) = ck. Then by adaptation of (*) we ask

whether there is an infinite power series

IE a x
i=o i

for which there are infinitely many hard initial segments; I.e. for infinitely

many n € N, the polynomial

n
E a4 x
i=0

gives c(a0,...,a~) =c~÷1
. A specific instance of this problem has been

examined by Lipton [3], who showed the following.

Theorem 1: There is a power series

IE a4 x
1=0

with a1 € {0 ,l}, I = 0,.. ,~ uch that for infinitely many n E N

1/4
c(a0,. .. ,a ) = c~~1 ~

for some fixed c > 0.

Our main result is a step toward solving (*) In a more general context.

Let MK be the number of strings a c {0,l}* such that tat = k and c(a) ck.

If there exists a real c, 0 < c � 1, such that
‘p

I

~~~~~~
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for infinitely many k, then there exists an infinite B E {0 1}W such that

c(Bø,...,Bn) = Cn+l

for Infinitely many n c N. We actually present two proofs of this result.

One proof is an easy corollary of the nonconstructive Borel—Cantelli lemma.

This proof gives almost no information regarding the string B beyond its

existence with nonzero probability —— indeed , all this is provided by such a

proof is an infinite set of strings that satisfy the conclusion. For our

purposes, however, more insight Is needed into the construction of B.

Therefore we give a more careful counting argument, which shows that If the

complexity measure c is a recursive function then the construction corresponds

to a computation in the Turing degree 0” [7]. Thus, even when viewed as

a strictly measure—theoretic argument , our result carries independent interest

since it gives a constructive proof technique for a class of theorems whose

only previous proofs have been nonconstructive existence proofs (Erd~Ss [4]).

- - --“-.- -—.~~~~~ .—--- — - - .  - - -. . - - .  - .  -, ‘p.- ~ 4 - - • * ~I~~ ~~ ‘~~~ - - - ~‘
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2. Red Trees

Problems of the form (*) can be viewed as problems concerning infinite trees

by making a simple observation. By way of analogy with Theorem 1, we call

finite strings with maximal complexity hard strings and say that an infinite

string is hard Infinitely often if it has infinitely many hard initial

prefixes. Since there is a natural correspondence between sets of strings

closed under the prefix relation and trees, we will interpret (*) as dealing

with infinite trees in which nodes can be colored red or white. A red branch

from the root will be a hard string . We will show how to construct infinite

branches that are red infinitely often for trees having the required

distribution of red nodes.

By a red tree we mean a countably infinite binary tree whose nodes are

partitioned into white nodes, denoted V~ , and red nodes , denoted VR. If T is

a tree and x u ~~~ then T~ 
denotes the subtree of T with root x. For

A 
~ 
VR u ~~~ A’ denotes the set of descendants of elements of A; i.e.

- 
A ’ = U T .xxEA

For any tree T and any node x of T, dT
(x) denotes the depth of x in T, i.e.

the length of the branch joir. ing x with the root of T. A level of T is the

set of nodes at a given depth; for k € N,

— {x: d
T(x) — k}.

If T is a red tree and c is a real number , 0 < c � 1, then we say that

T is c—red if for infinitely many k c N

I

- — 
-

~~~ 
— 
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n VR I � ~2
k

Intuitively, we sat that T is c—red if there are Infinitely many levels at

which some fixed positive fraction of the nodes are colored red.

The key property of c—red trees is established by the following

theorem.

Theorem 2: If T is an c—red tree, then for tome c’ > 0 and some x E VR, T~
is c’—red.

Proc~f: For any node x € VR u V~ and A > 0, we define f(x,A) as follows :

f(x,A) = ~ik[(Vn)(n � k -‘- I
~Tx

(n) n VR I < A2n Lt (2.1)

If there are x € VR 
and A > 0 such that f(x,A) = ~~, then for all k there

exists n � k such that

ILT (n) n VR I � A2~~,

and thus T Is A—red. Hence, it is sufficient to assume that for all x c Vx R

a n d A > 0

f(x ,A) <

in order to derive a contradiction.

Choose d c N, 6 < 0, such that

1 — dc + (d—l)•6 < 0. (2.2)

t For any predicate P(v,x1,.. ~~~~~ pyrP (y,x1,...,x~)J denotes the smallest

v N such that P(v,x1,...,x~) holds.

* ‘ a ‘1
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We will now describe a construction that at its nth stage define

(I) a depth k
n of T,

(ii) a set of white nodes W ,

(iii) a set of red nodes NR ,

(iv) a set of red nodes OR ,

(v) a set of red nodes R = NR u OR .
n n n —

The distribution of W~ , NR , OR~ at the nth stage of construction is shown in

Figure 1. Using the fact that f(x,A) < at each stage, our construction will

allow us to accumulate red nodes discarded at previous stages, the old red

nodes OR , along with the new red nodes NR encountered at the current stage
n n

and white nodes W until at some achievable stage the assumption that

f(x ,A) < forces an impossible condition on W .

We now give an inductive description of the construction.

S-ta~c 1: (1) construction of k1: Since T is c—red , there is some b c N

such that

ILT(b) fl VR I �

therefore set k
1 

— b;

(ii) W1 
= V

~ 
n LT(kl);

(iii) NR1 = VR 
f l  LT(k

l);

(iv) OR1 = $ (+ = empty set);
(v) R

1 = NR1 u OR1.

Assume that Stages 1,... ,n are complete and consider

-et.

E1. 
_• - .. ._a.-—,_~~~

___ _ •___ - ,~~• - , j •. . .  .~~~~~~ 4 - /  a d - . ~~~~~~~~~~~~ -.~ ~ 
. -~ 

—~~~~~~—~~~~~~~~~~ ~--~~~~~~~~~~~~~—--~~~ ~~~-~~~ - -~~ ~~~~~~
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V

V

Figure 1. First n Stage of Construction (ORe 
= Q1 U ... ~~~~~~~~~~~
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S-tag~ n+1: (I) construction of k5+1: Since the condition

I9.T(b) n VR I ~ (2.3)

is true for b infinitely often, there is an integer b

satisfying (2.3) and

6
b > max {f(x, ~~4 t (~~ )

) •  x ~ R1 
U . . .  U

where

•( n )  = E 1R11; (2.4)
1=1

therefore choose k =n+l

(ii) W~~ 1 = W ’ n 
~

(iii) NR +l = W ’ n VR n

(iv) OR +l = R’ n VR n tT(kn+l)t

(v) R +l NR5+1 u OR +i.

This completes the description of the construction . Our theorem now

follows from a lemma .

Lenrza: For n c N,

IW ~ I � (1 - nt + (n-I)6) 2k~~

Pro-,f: We first claim that

IOR~I � 62kg

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. , : .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -- 
— _

~~~~ 
— 
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To establish this claim, consider Stage n of the construction outlined above

(see Figure 1). By step (iv),

n-i
OR = u Qn i

i=l

where Q1 ~ 
VR 

f l  LT(k) n R .  But for 1 � I < n

1Q11 � 1R1 1 • max ILT(k
fl
) fl V~ n

xcR1

and since for • defined by (2.4)
k~ � max (f (x , (n—l)~~(n—l) 

x c ft1 U ft2 U ... U

it follows that for I .= 1,... ,n—i

1Q1I < 
(n—l)$(n—l)

Therefore

tORn I (2.5)

n—i 1R1
1.62kn

� 

~~~ 
(n—l)4’(n—l)

k n— i I R I
� 62 ~ (n—l)$(n—l)

~~ 62~~,

establishing our claim.

Now, by the definition of

O R I + I N R I � c 2 ~~
u ,

a n

I

~~~~~~~~~~~~~~~~
-_
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and thus by (2.5)

1NR~ I � (c~6)2~~. (2.6)

We know by steps (iii) and (iv) of Stage n that W
n a NRn = • and

V U NR = W 1_1 a

so that

IW~ I + INR~ t = t W ~_1I . 2
kn’4cn_l ,

and therefore, by (2.6),

I W I  � IW l I . 2
kn kn..1 — (c—6)21

~~.

Proceeding inductively , we finally obtain

1W I
~ 

(l~~ (n-l)c + (n-2)6) ~~~~ . 2kn kn_1 
- (E_o)2kfl

� (1 — nc + (n—l)6) ~~~ o

Returning now to the proof of the main theorem, let us consider Stage

n — d of the construction. By (2.2) and the lemma, we have

IWd I � (1 — de + (d—l)6) . 2kd < 0,

- 

~‘- which is clearly impossible. Thus we conclude that for some x c VR and

o < A � 1 f(x,A) 
~~ . LI

We are now ready to prove our main result. The constructive proof will

follow directly from Theorem 2, while the nonconstructive proof relies on the

following technical fact:

-

‘

I

- ~ —~~.—. ‘p - 
. - ,: ~~~~~~~~~~~ ~ ~~~ ~- - •

_ _ _  _ _ _ _ _ _  -.- - - - —--—- --- ~~~-- --- — ‘--- -~~~~~--~~~~~~~~~-



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—_-

—12—

Lema (Lemperti [5]): Let M = A1,.. .,A5,... be events in a sample space and

let v be a probability measure such that

E v(A 4 ) = ~~
1=1

and for some real c > 0

v(A~ a Am) < c v(A ) V(A
m
)

for infinitely many n,m c N. Then

v(llm sup A~) > 0,
n-’~

i.e. the events A1,... occur infinitely often with nonzero probability.

Theorem 3: Let T be c—red for some real c > 0. Then T contains an infinite

branch that is red infinitely often.

Proof (Constructive Version): By Theorem 2 we can inductively form the

following branch :

(I) Let E VR be the first node in an enumeration of VR ii

such that is c’—red for some c’ > 0 and let 8], be the

branch from the root of T to x1.

(ii) Assume we have constructed branch 
~~ 

Then T,~ is c—red for

some c > 0 and there is a first node x ,~,1 in VR U V~ such

that Tx~+i 
Is c’—red. Let y be the path from x~ to Xn+l and

def ine 6n+l

Clearly u 8 is infinite and red infinitely often. 0
n u n

- iç.

- F- .

~ 

--~~~~~
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Proof (Non—constructive Version): Let v(Ai) be the probability of achieving a

branch from the rest of T through 1
T~
1
~ 

containing a red node x. Then by

• Lemperti’s lemma there is, with non—zero probability , an infinite branch that

is red infinitely often. 0

As we promised , the constructive version of the theorem yields more

information about the hard path than the non—constructive proof does. Observe

that the construction used In the proof of Theorem 2 requires only finitely

many evaluations of f(x,A) at known arguments and that determination of

f(x,X) requires only Turing machine computations that ask oracle questions of

the type (Vn)(~k ) R ( n,k.x) for some recursive R. Thus the procedure is

recursive in 0”. Conversely, every 0” computation is recursive in the f(x,A )

construction. The following corollary states this precisely .

Corollary: The function defined by the constructive proof of Theorem 3 is in

the Turing degree 0”.

p Proof: By the observation above, the construction defines a set in fl 113 in

the arithmetical hierarchy and thus the construction is recursive in 0” (see
-.1,

e.g. Theorem VIII, page 314 [7J). On the other hand , given a predicate of the

form (Vn)(3k)R(n ,k ) ,  we may form the red tree T, which has Q
T(n) 

~ 
VR ~f

(3k ) R ( n,k) and P.T(m) 
c V for  all m � n if -“(3k)R(n ,k) .  Therefore , the 0”

computations are recursive in our construction. 0

I

E. - ~~~~
-
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